切比雪夫不等式公式是在概率论中切比雪夫不等式(英语Chebyshev's Inequality)显示了随机变量的几乎所有值都会接近平均切比雪夫不等式对任何分布形状的数据都适用。
在概率论中,切比雪夫不等式(英语:Chebyshev's Inequality)显示了随机变量的“几乎所有”值都会“接近”平均。切比雪夫不等式,对任何分布形状的数据都适用。
同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。
公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。具有普遍性,适合于同类关系的所有问题。 在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。