(手机不好打符号,所以下文中“x的a次方”均用“x^a”表示,“x分之一”用“x^(-1)”表示”,“根号x”用“x^(1/2)”表示。)
(可能有些乱,不妨看的同时转化在纸上写出来清楚些~。)
常见求值域的方法有:
1.配方法(常用于二次函数)。
即将二次函数整理成形如y=a(x-h)^2+b,若a>0则值域为[b,正无穷),若a<0则值域为(负无穷,b]。
2.换元法。
将复杂的函数通过换元转化为熟悉函数的形式。如y=4^x+2^x+3,可以设t=2^x,所以原函数就可以转化为y=t^2+t+3,求其值域。
3.基本不等式法。
先对函数变形,使之具备“一正二定三等”的条件后,再用基本不等式求出值域。如形如函数y=ax+bx^(-1)。
4.利用函数的单调性。
5.分离常数法。
6.数形结合法。
例题:求函数y=(x^2-2x+5)^(1/2)+(x^2+2x+5)^(1/2)的值域
解题思路:原函数整理后可化为y=[(x-1)^2+(0-2)^2]^(1/2)+[(x+1)^2+(0-2)^2]^(1/2)。设P点坐标为(x,0),A点坐标为(1,2),B点坐标为(-1,2),则函数y则可以理解为PA,PB两线段和即y=|PA|+|PB|,再结合图像坐标………
7.导数法。
先求导,然后求在给定区间上的极值,最后结合端点值,求出值域和最值。
(有的地方就不展开了,还有不明白的可以追问w。)