【 #小学奥数# 导语】海阔凭你跃,天高任你飞。愿你信心满满,尽展聪明才智;妙笔生花,谱下锦绣第几篇。学习的敌人是自己的知足,要使自己学一点东西,必需从不自满开始。以下是 无 为大家整理的《小学五年级奥数题【三篇】》 供您查阅。
【第一篇:自然数】
三个自然数,的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。
分析: 先大概估计一下,30×30×30=27000,远小于42560.40×40×40=64000,远大于42560.因此,要求的三个自然数在30~40之间。
解:42560=26×5×7×19
=25×(5×7)×(19×2)
=32×35×38(合题意)
要求的三个自然数分别是32、35和38。
【第二篇:两城路程】
甲乙两列火车同时从东西两城相向开出,甲车每小时行49千米,乙车每小时行47千米,相遇时甲车比乙车多行36千米.求两城之间的路程.
答案与解析:36÷(49-47)×(49+47)=1728(千米).
【第三篇:抽屉原则问题】
【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。
【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。
抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0
通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
【解题思路和方法】 (1)改造抽屉,指出元素;
(2)把元素放入(或取出)抽屉;
(3)说明理由,得出结论。
例1 育才小学有367个1999年出生的学生,那么其中至少有几个学生的生日是同
一天的?
解 由于1999年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。
这说明至少有2个学生的生日是同一天的。
例2 据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?
解 人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到
3645÷20=182……5 根据抽屉原则的推广规律,可知k+1=183
答:陕西省至少有183人的头发根数一样多。
例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?
解 把四种颜色的球的总数(3+3+3+2)=11 看作11个“抽屉”,那么,至少要取(11+1)个球才能保证至少有4个球的颜色相同。
答;他至少要取12个球才能保证至少有4个球的颜色相同。