最优化之论单纯形法与对偶单纯性法的区别
单纯形法是求解线性规划问题的主要方法,而对偶单纯形方法是将单纯形方法应用于对偶问题的计算,对偶单纯性方法则提高了对求解线性规划问题的效率,它具有以下优点:
初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算;对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。
问题标准化后,价值系数全非正;所有约束全是不等式。
最优化之论单纯形法与对偶单纯性法的区别
单纯形法是求解线性规划问题的主要方法,而对偶单纯形方法是将单纯形方法应用于对偶问题的计算,对偶单纯性方法则提高了对求解线性规划问题的效率,它具有以下优点:
初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算;对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。
问题标准化后,价值系数全非正;所有约束全是不等式。