结晶(crystallization)是一种历史悠久的分离技术,是化工、制药、轻工等工业生产常用的精制技术,可从均质液相中获得一定形状和大小的晶状固体。在氨基酸、有机酸和抗生素等生物制品行业,结晶已经成为重要的分离纯化手段。结晶是从液相或气相生成形状一定、分子(原子、离子)有规则排列的晶体的现象。但工业结晶操作主要以液体原料为对象,结晶是新相生成的过程。作为一种化工单元操作过程,结晶过程没有其他物质的引入,结晶操作的选择性高,可制取高纯或超纯产品。近年来随着对晶体产品要求的提高,不仅要求纯度高、产率大,还对晶形、晶体的主体颗粒、粒度分布、硬度等都加以规定。因此,人们寻求各种外界条件来促进并控制晶核的形成和晶体的生长,以期得到理想的产品。溶液结晶技术是一个重要的化工单元操作,是跨学科的分离与生产技术,近20年来该技术在国际上取得了一定的进展。结晶技术作为跨世纪发展的化工技术,将成为21世纪高新技术发展的基础手段之一。
结晶技术近年来发展迅速,主要有反应结晶、真空结晶、无溶剂结晶、高压结晶、膜结晶、萃取结晶、蒸馏一结晶耦合、超临界流体(SCF)结晶、升华结晶等结晶技术等。未来结晶理论及技术的研究方向主要集中在以下几个方面:①近代超分子化学与凝聚态物理是计算分子结晶学进一步发展的基础;②应用现代化测试技术进一步揭示工业结晶与粒子过程的机理,加速模型由艺术向科学的转化;③新型结晶技术与设备持续发展,耦合型结晶技术将是主要发展方向之一;④计算流体力学进入了工业结晶过程设计与优化;⑤功能结晶分子与超分子设计的研究。当然,开发溶液结晶新技术、新设备,研究计算机辅助控制的最优化程序,实现结晶粒度分布的最佳设计,也是未来的发展方向。
溶液结晶过程可以根据不同的方式进行分类。一般根据过饱和度的产生方式进行分类,如冷却结晶、蒸发结晶、超声波结晶和高压结晶等,其他还有溶析结晶、冷冻结晶和萃取结晶等。根据结晶操作方式可分为分批结晶和连续结晶等。
重结晶(recrystallizatio曲是将晶体溶于溶剂或熔融以后,又重新从溶液或熔体中结晶的过程,又称再结晶。重结晶可以使不纯净的物质获得纯化,或使混合在一起的盐类彼此分离 。