<怎么做零点存在定理的题-百科大全-春风百科
> 百科大全 > 列表
怎么做零点存在定理的题
时间:2024-12-23 19:06:55
答案

零点定理,函数的一个定理.

函数设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ

证明:不妨设f(a)<0,f(b)>0.令

E={x|f(x)<0,x∈[a,b]}.

由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,

存在ξ=supE∈[a,b].

下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,

(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知

存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,

这与supE为E的上界矛盾;

(ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知

存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,

这又与supE为E的最小上界矛盾。

综合(i)(ii),即推得f(ξ)=0。

我们还可以利用闭区间套定理来证明零点定理。

诚心为您回答,希望可以帮助到您,赠人玫瑰,手有余香,如若对回答满意,给个好评吧O(∩_∩)O~

推荐
© 2024 春风百科