诱导公式
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= —sinα
cos(π+α)=—cosα
tan(π+α)= tanα
cot(π+α)=cotα
公式三: 任意角α与-α的三角函数值之间的关系:
sin(-α)=—sinα
cos(-α)= cosα
tan(-α)=—tanα
cot(-α)=—cotα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=—cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)= cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2 ± α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
同角
①倒数关系sinα·cosα=1,cosα·secα=1,tanα·cotα=1.
②商数关系tanθ=sinθ/cosθcotθ=cosθ/sinθ
③平方关系sin2θ+cos2θ=1;1+tan2θ=sec2θ;1+cot2θ=csc2θ
特殊角
图像
两角和差
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角
辅助角、降幂
cos²x=(1+cos2x)/2 sin²x=(1-cos2x)/2 tan²x= sin²x / cos²x=(1-cos2x)/(1+cos2x)