答案为 1/2x+1/4sin2x+C。
解题过程:
解:原式=1/2∫(1+cos2x)dx
=1/2∫1dx+1/2∫cos2xdx
=1/2x+1/4∫cos2xdx
=1/2x+1/4sin2x+C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C