arcsin 1=pi/2
arcsin 0.5=pi/6
arcsin (二分之根二)=pi/4
arcsin (二分之根三)=pi/3
arcsin 0=0
arcsin -1=-pi/2
arccos 1=0
arccos 0.5=pi/3
arccos (二分之根二)=pi/4
arccos (二分之根三)=pi/6
扩展资料:
反三角函数分类:
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。
反三角函数的定义域与值域:
反三角函数值域必须要包含锐角区间 ,这是默认规则,因为锐角是最常用的角度/弧度值,反三角函数必须能够取到其中的值。
能够定义反函数的区间必须是“一一对应”的,所以和锐角区相接的定义域必须保证能够不重不漏地取遍原来函数的值域。