辗转相除法是一种求两个数的最大公约数的方法。其原理是:对于两个正整数a,b(a≥b),将它们的模(余数)表示为r₁,r₂,r₃ …… rₙ,即:
a = q₁b + r₁
b = q₂r₁ + r₂
r₁ = q₃r₂ + r₃
……
rₙ₋ ₂ = qₙrₙ₋₁ + rₙ
其中,q₁、q₂、q₃ …… qₙ₋₁分别表示商,r₁、r₂、r₃ …… rₙ分别表示余数。
如果某一步的余数为0,则下一步的商就是a和b的最大公约数。通常,这个算法会一直持续到余数为0。
辗转相除法是一种求两个数的最大公约数的方法。其原理是:对于两个正整数a,b(a≥b),将它们的模(余数)表示为r₁,r₂,r₃ …… rₙ,即:
a = q₁b + r₁
b = q₂r₁ + r₂
r₁ = q₃r₂ + r₃
……
rₙ₋ ₂ = qₙrₙ₋₁ + rₙ
其中,q₁、q₂、q₃ …… qₙ₋₁分别表示商,r₁、r₂、r₃ …… rₙ分别表示余数。
如果某一步的余数为0,则下一步的商就是a和b的最大公约数。通常,这个算法会一直持续到余数为0。