<盛金公式的公式简介-百科大全-春风百科
> 百科大全 > 列表
盛金公式的公式简介
时间:2024-12-23 15:33:30
答案

解一元三次方程问题是世界数学史上较著名且较为复杂而又有趣味的问题,虚数概念的引进、复数理论的建立,就是起源于解三次方程问题。1545年,意大利学者卡尔丹(Cardano,1501—1576,有的资料译为卡尔达诺)发表了三次方程X^3+pX+q=0的求根公式,卡尔丹是第一个把负数写在二次根号内的数学家,并由此引进了虚数的概念,后来经过许多数学家的努力发展成了复数的理论。

一元三次方程应用广泛,用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但是使用卡尔丹公式解题比较复杂,缺乏直观性。

上世纪80年代,中国的一名中学数学教师范盛金对解一元三次方程问题进行了深入的研究和探索,发明了比卡尔丹公式更实用的新求根公式——盛金公式,并建立了简明的、直观的、实用的新判别法——盛金判别法,同时提出了盛金定理,盛金定理清晰地回答了解三次方程的疑惑问题,且很有趣味。

盛金公式的特点是由最简重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd和总判别式Δ=B^2-4AC来构成,体现了数学的有序、对称、和谐与简洁美。

盛金公式简明易记、解题直观、准确高效。

特别是当Δ=B^2-4AC=0时,盛金公式③:X⑴=-b/a+K;X⑵=X⑶=-K/2,其中K=B/A,(A≠0),其表达式非常简洁漂亮,不存在开方(此时的卡尔丹公式仍存在开立方),手算解题效率高。盛金公式③被称为超级简便的公式。盛金公式与判别法及定理形成了一套完整的、简明的、实用的、具有数学美的解三次方程的理论体系,范盛金创造出的这套万能的系统方法,对研究解高次方程问题及提高解三次方程的效率作出了贡献。

范盛金发明的“一元三次方程的新求根公式与新判别法”于1989年发表在《海南师范学院学报》(自然科学版)第2期。

推荐
© 2024 春风百科