<对角矩阵的逆矩阵-百科-春风百科
> 百科 > 列表
对角矩阵的逆矩阵
时间:2024-12-23 11:52:02
答案

Aij是矩阵A(aij)中元素aij的代数余子式,矩阵A*(Aij)成为A的伴随矩阵,d=|A|,A的矩阵=d分之一×A*

n×2n矩阵(AE),用初等行变换把它的左边一半化成E,这时右边一半就是A的逆矩阵。

那叫对角阵。就是只有主对角线上有n个元素,其它位置都是0。

判断给出的对角阵是否可逆,只要n个数都不为0就可逆(注意要所有的全不是0)。

对于这样的对角阵 ,他的逆矩阵是:将原来的对角线上的n个元素全部换成他们的倒数,再放到原来的对角线位置。得到的新的对角阵就是原对角阵的逆矩阵。

扩展资料:

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。当A的特征方程有重根时.就不一定有n个线性无关的特征向量,从而未必能对角化。

n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。同阶对角矩阵的乘积仍为对角阵,且它们的乘积是可交换的。

推荐
© 2024 春风百科