幂函数的运算法则及公式如下:
1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。
2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。
4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
基本的函数的导数:
1、y=a^x,y'=a^xlna。2、y=c(c为常数),y'=0。
3、y=x^n,y'=nx^(n-1)。
4、y=e^x,y'=e^x。5、y=logax(a为底数,x为真数),y'=1/x*lna。
6、y=lnx,y'=1/x。7、y=sinx,y'=cosx。
8、y=cosx,y'=-sinx。9、y=tanx,y'=1/cos^2x。
扩展资料:
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
幂运算的六个基本公式:
一、同底同指数幂的加减法公式,字母和指数均不变,系数相加减;
二、同底数幂乘法公式,底数不变,指数相加;
三、同底数幂除法公式:底数不变,指数相减;
四、不同底同指数幂的乘法公式,底数相乘,指数不变;
五、不同底同指数幂除法公式,底数相除,指数不变。
六、幂的乘方公式,底数不变,指数相乘。