1、三角函数常用公式
(1)两角和与化的公式
sin(A±B)=sinAcosB±cosAsinB;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanA·tanB);tan(A-B) =(tanA-tanB)/(1+tanA·tanB)。
(2)和差化积公式
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2];sina-sinb=2cos[(a+b)/2]sin[(a-b)/2];cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2];cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]。
(3)积化和差公式
sinasinb=-1/2[cos(a+b)-cos(a-b)];cosacosb=1/2[cos(a+b)+cos(a-b)];sinacosb=1/2 [sin(a+b)+sin(a-b)]; cosasinb=1/2 [sin(a+b)-sin(a-b)]。
2、反三角函数常用公式
(1)arcsin(-x)=-arcsinx;arccos(-x)=π-arccosx;arctan(-x)=-arctanx;arccot(-x)=π-arccotx。
(2)arcsinx+arccosx=π/2=arctanx+arccotx;sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。
(3)当x∈(—π/2,π/2)时,arcsin(sinx)=x;当x∈(0,π),arccos(cosx)=x;x∈(—π/2,π/2),arctan(tanx)=x;x∈(0,π),arccot(cotx)=x。
(4)若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。
扩展资料
反三角函数分类
1、反正弦函数
正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。
3、反正切函数
正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
4、反余切函数
余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
反正割函数
正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
5、反余割函数
余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。