<抛物线弦长公式推导-常识百科-春风百科
> 常识百科 > 列表
抛物线弦长公式推导
时间:2024-12-23 15:06:31
答案

证明:设抛物线为y^2=2px(p>0),过焦点F(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于A(x1,y1),B(x2,y2)

联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0

所以x1+x2=p(k^2+2)/k^2

由抛物线定义,AF=A到准线x=-p/2的距离=x1+p/2, BF=x2+p/2

所以AB=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a

证毕

推荐
© 2024 春风百科