原式=sinAsinB/sinC+sinBsin(A+B)/sinA+sinAsin(A+B)/sinB
=sinAsinB/sinC+sinBsinBsin(A+B)/sinAsinB+sinAsinAsin(A+B)/sinBsinA (通分)
=sinAsinB/sinC+sin(A+B)(sin²B+sin²A)/sinAsinB
=sinAsinB/sinC+sin(A+B)/sinAsinB
由于sinA,sinB大于0,可运用均值不等式,即
sinAsinB/sinC+sin(A+B)/sinAsinB≥2根号{(sinAsinB/sinC)*sin(A+B)/sinAsinB}
=2
所以原式的最小值为2
可能写的不详细,你自己可以看看,当参考