<椭圆标准方程的推导过程-生活常识-春风百科
> 生活常识 > 列表
椭圆标准方程的推导过程
时间:2024-12-23 16:59:31
答案

椭圆标准方程的推导过程(x-h)²/A²+(y-k)²/B²=1。

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。

椭圆的周长等于特定的正弦曲线在一个周期内的长度。在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。

椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。

椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面垂直于圆柱体轴线。椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点的距离与曲线上的相同点的距离的比值给定行是一个常数。

椭圆与三角函数的关系:

关于椭圆的周长等于特定的正弦曲线在一个周期内的长度的证明:半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。

则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=rtanαsin(c/r)。r:圆柱半径;α:椭圆所在面与水平面的角度;c:对应的弧长(从某一个交点起往某一个方向移动)。

以上为证明简要过程,则椭圆(x*cosα)^2+y^2=r^2的周长与f(c)=rtanαsin(c/r)的正弦曲线在一个周期内的长度是相等的,而一个周期T=2πr,正好为一个圆的周长。

推荐
© 2024 春风百科