抛物线焦点弦长公式是:2p/sina^2。
抛物线焦点弦的性质焦点弦两端点处的两条切线相交在准线上,并且该交点与焦点的连线垂直于这条焦点弦。反过来,过准线上任意一点作圆锥曲线的两条切线,连接这两个切线的直线将通过焦点。以焦点弦为直径的圆与相应准线的关系:椭圆相离;双曲线相交;抛物线相切。
推导过程:
证明:设抛物线为y^2=2px(p>0),过焦点f(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于a(x1,y1),b(x2,y2)。
联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0。
所以x1+x2=p(k^2+2)/k^2。
由抛物线定义,af=a到准线x=-p/2的距离=x1+p/2。
bf=x2+p/2。
所以ab=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a。