法线方程怎么求如下:
设曲线方程为y=f(x)。在点(a,f(a))的切线斜率为f(a),因此法线斜率为-1/f(a)。由点斜式得法线方程为:y=-(x-a)/f(a)+f(a)。
法线方程对于直线,法线是它的垂线,对于一般的平面曲线,法线就是切线的垂线;对于空间图形,是垂直平面。法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用a、B表示,则必有0B=-1。法线可以用1元一次方程来表示,即法线方程。与导数有直接的转换关系。
法线基本简介:
始终垂直于某平面的虚线,公正无私,像个法官一样,故取名为法线。曲线的法线是垂直于曲线上一点的切线的直线,曲面上某一点的法线指的是经过这一点并且与该点切平面垂直的那条直线(即向量)。
过入射点垂直于镜面的直线叫做法线。对于立体表面而言,法线是有方向的:一般来说,由立体的内部指向外部的是法线正方向,反过来的是法线负方向。
法线计算:
对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线的法向量。
如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为如果曲面S用隐函数表示,点集合(x,y,z)满足F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为
如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。反射光沿斜方向射出.