1)直接法——从自变量x的范围出发,推出y=f(x)的取值范围
2)配方法——配方是求“二次函数类”值域的基本方法,形如f(x)=af(x)方bf(x)方+c的函数的值域问题,均可使用配方法
3)反函数法——利用函数与他的范函数的定义域与值域的互逆关系,通过求范函数的定义域,得到原函数的值域。一次分数式型均可使用反函数,此外,此种类型也可使用“分离常数法”求得
4)判别式法——把函数转化成关于x的二次方程f(x,y)=0,通过方程有实根,判别式“的塔”>=0,从而求得原函数的值域。通常用于球二次分式型
5)换元法
运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求的函数的值域 形如:y=ax+b-根号cx+d(a,b,c,d均为常数,且a不为0)的函数常用此方法求解
6)不等式法
利用均值不等式求函数的值域,“一正、二定、三相等”
7)单调性法
确定函数在定义域(或某个定义域上的子集)上的单调性求出函数的值域
分母中含根号的分式的值域均可使用此方法求解
8)求导法
当一个函数在定义域上可导时,可据其导数求最值
9)数形结合
当一个函数图像可作时,通过图像可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域