<新奇美妙话“拓扑”讲的是什么呢?-常识百科-春风百科
> 常识百科 > 列表
新奇美妙话“拓扑”讲的是什么呢?
时间:2024-12-23 19:33:12
答案

哥尼斯堡有一条河,叫勒格尔河。这条河上,共建有七座桥。河有两条支流,一条叫新河,一条叫旧河,它们在城中心汇合。在合流的地方,中间有一个小岛,它是哥尼斯堡的商业中心。

哥尼斯堡的居民经常到河边散步,或去岛上买东西。有人提出了一个问题:一个人能否一次走遍所有的七座桥,每座只通过一次,最后仍回到出发点?如果对七座桥沿任何可能的路线都走一下的话,共有5040种走法。这5040种走法中是否存在着一条既都走遍又不重复的路线呢?这个问题谁也回答不了。这就是著名的“七桥问题”。

这个问题引起了著名数学家欧拉的兴趣。他对哥尼斯堡的七桥问题,用数学方法进行了研究。1736年欧拉把研究结果送交彼得堡科学院。这份研究报告的开头是这样说的:

“几何学中,除了早在古代就已经仔细研究过的关于量和量的测量方法那一部分之外,莱布尼兹首先提到了几何学的另一个分支,他称之为‘位置几何学’。几何学的这一部分仅仅是研究图形各个部分相互位置的规则,而不考虑其尺寸大小。”

从欧拉这段话可以看出,他考虑七桥问题的方法是,只考虑图形各个部分相互位置有什么规律,而各个部分的尺寸不去考虑。

欧拉研究的结论是:不存在这样一条路线!他是怎样解决这个问题的呢?按照位置几何学的方法,首先他把被河流隔开的小岛和三块陆地看成为A、B、C、D四个点;把每座桥都看成为一条线,这样一来,七桥问题就抽象为由四个点和七条线组成的几何图形了,这样的几何图形数学上叫做网络。于是,“一个人能否无重复地一次走遍七座桥,最后回到起点”就变成为“从四个点中某一个点出发,能否一笔把这个网络画出来”。欧拉把问题又进一步深化,他发现一个网络能不能一笔画出来,关键在于这些点的性质。

如果从一点引出来的线是奇数条,就把这个点叫奇点;如果从一点引出来的线是偶数条,就把这个点叫做偶点。

欧拉发现,只有一个奇点的网络是不存在的,无论哪一个网络,奇点的总数必定为偶数。对于A、B、C、D四个点来说,每一个点都应该有一条来路,离开该点还要有一条去路。由于不许重复走,所以来路和去路是不同的两条线。如果起点和终点不是同一个点的话,那么,起点是有去路没有回路,终点是有来路而没有去路。因此,除起点和终点是奇点外,其他中间点都应该是偶点。

另外,如果起点和终点是同一个点,这时,网络中所有的点要都是偶点才行。

欧拉分析了以上情况,得出如下规律:

一个网络如果能一笔画出来,那么该网络奇点的个数或者是2或者是0,除此以外都画不出来。

由于七桥问题中的A、B、C、D四个点都是奇点,按欧拉的理论是无法一笔画出来的,也就是说一个人无法没有重复地走遍七座桥。

欧拉对哥尼斯堡七桥的研究,开创了数学上一个新分支——拓扑学的先声。

说拓扑学“新奇”,主要是指拓扑学本身而言。它的确是“新”,数学家们提出拓扑学这个词才不过100多年,1848年,德国人里斯才写出第一本关于拓扑学的书。拓扑学也的确是“奇”,下面你就亲自来体会一下拓扑学之“奇”吧。

裁四张长纸条。用毛笔把第一张纸条的两面全部涂黑。如果不准毛笔经过纸条边缘,那么涂完一面以后,必须提起毛笔,至少使它离开纸条一次,才能涂到另一面。

把第二张纸条扭转180度与D点相接,B点与C点相接,粘成一个纸圈。现在又用毛笔来涂这个纸圈,你会发现,毛笔不用离开纸面就可以把它全部涂黑。这是怎么回事?原来这个纸圈只有一个面,真是不可思议!数学家称这个纸圈为“牟比乌斯带”,因为它是德国数学家牟比乌斯在1858年首次做出来的。请你再做一个牟比乌斯带,用剪刀沿虚线把它从中间剪开。你一定以为会得到两个纸圈吧。其实,大大出乎你的预料,你会得一个比原来长一倍窄一半,而且又是普通的有两面的纸圈了。

现在做最后一个最奇妙、也是最精彩的实验。把第四张纸条扭转360度,沿两条虚线把它剪开,剪出的不是三个分开的纸圈,而是三个一样大小,互相套在一起的纸圈!拓扑学就要研究这些纸圈,你说奇不奇?

推荐
© 2024 春风百科