在概率中,C表示组合数。c(6,3)=6×5×4/(3×2×1)=20
是从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数。
C(n,m) 表示 n选m的组合数,等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积。
扩展资料
排列组合计算方法如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6