1、杨辉法发明者:杨辉适用:4阶魔方阵方法:以十六子,依次递作四行排列,先以外四子对换,一换十六、四换十三,以四内角对换,六换十一、七换十,横直上下斜角,皆三十四数,对换止可施之于小。
01 02 03 04 16 02 03 13 16 02 03 13 05 06 07 08 05 06 07 08 05 11 10 08 09 10 11 12 09 10 11 12 09 07 06 12 13 14 15 16 04 14 15 01 04 14 15 01
杨辉法推广-消去对角线法适用:四之倍数阶魔方阵方法:⑴先将整个方阵划分成k*k个4阶方阵,然后在每个4阶方阵的对角线上做记号⑵由左而右、由上而下,遇到没有记号的位置才填数字,但不管是否填入数字,每移动一格数字都要加1 ⑶自右下角开始,由右而左、由下而上,遇到没有数字的位置就填入数字,但每移动一格数字都要加1
⒉井字法适用:四之倍数阶魔方阵方法:⑴把1~n*n从左上角依序填入方阵内⑵用两条铅直线和两条水平线将方阵分隔成四个角落各有一个n/4阶的子方阵,和中心位置有一个n/2阶的子方阵⑶以方阵中心为对称点,将五个子方阵的数字作对称交换,其它的数字不要动。这样的方阵会是一个魔方阵
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
⒊辅助方阵法适用:偶数阶魔方阵(因非四的倍数作法相当复杂,在此只介绍四的倍数的作法)方法:⑴制作辅助方阵一:第一列由左向右排列1至n,第二列由右向左排列1至n,第三列同第二列,第四列同第一列,若超过四列,重复一至四列的作法,完成辅助方阵一⑵制作辅助方阵二:将第一个辅助方阵各方格内的数字x换成n(x-1),再做行列互换,完成辅助方阵二⑶将辅助方阵一与二的对应方格内之数相加填到一个新的方阵对应方格内,则新的方阵即为一个魔方阵01 02 03 04 00 12 12 00 01 14 15 04 04 03 02 01 04 08 08 04 08 11 10 05 04 03 02 01 08 04 04 08 12 07 06 09 01 02 03 04 12 00 00 12 13 02 03 16
补充:非4的倍数时即 n=4k+2时
先将整个方阵划成田字型的四个2 k + 1阶的奇数阶小方阵,并以下法做注记: 1,右半两个小方阵中大于k+2的列。 2,左半两个小方阵中( k + 1 , k + 1 )的格位。 3,左半两个小方阵中除了( 1 , k + 1 )的格位之外,小于k +1的列。 以奇数阶魔方阵的方法连续填制法依左上、右下、右上、左下的顺序分别填制这四个小方阵。 将上半及下半方阵中有注记的数字对调,魔方阵完成。
例:k=1时构造完如下
35 1 6 26 19 24
3 32 7 21 23 25 31 9 2 22 27 20 8 28 33 17 10 15 30 5 34 12 14 16 4 36 29 13 18 11
⒋扩阶法同奇数阶之作法
⒌方阵合成法同奇数阶之作法