切线长定理的应用如下:切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。它指出,从圆外一点引圆的两条切线,它们的切线长相等。即如图,AB、AC切圆O于B、C,切线长AB = AC。
切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。
切线的性质:切线和圆只有一个公共点;切线和圆心的距离等于圆的半径;切线垂直于经过切点的半径。
切割线定理发现者应该是米勒。切割线定理的推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系。
重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.
难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来。