<中学数学不等式证明方法-百科-春风百科
> 百科 > 列表
中学数学不等式证明方法
时间:2024-12-23 19:07:02
答案

不等式的证明,基本方法有

比较法:比较两个式子的大小,求差或求商。是最基本最常用的方法

综合法:用到了均值不等式的知识,一定要注意的是何时等号才成立。

分析法:当无法从条件入手时,就用分析法去思考,但还是要用综合法去证明。两个方法是密不可分的。

换元法:把不等式想象成三角函数,方便思考

反证法:假设不成立,但是不成立时又无法解出本题,于是成立

放缩法:

用柯西不等式证。等等……

高考不是重点,但是难点。

大学数学也会讲到柯西不等式。

如果a、b都为实数,那么a平方+b平方≥2ab,当且仅当a=b时等号成立

如果a、b都是正数,那么(a+b)/2 ≥√ab ,当且仅当a=b时等号成立。(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b时等号成立。)

和定积最大:当a+b=S时,ab≤S^2/4(a=b取等)

积定和最小:当ab=P是,a+b≥2√P(a=b取等

概念:N个正实数的算术平均数大于等于其几何平均数

算术平均数,arithmetic mean,用一组数的个数作除数去除这一组数的和所得出的平均值,也作average

几何平均数,geometric mean,作为n个因数乘积的数的n次方根,通常是n的正数根

设a1,a2,a3,...,an是n个正实数,则(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an),当且仅当a1=a2=…=an时,均值不等式左右两边取等号

[编辑本段]●【均值不等式的变形】

(1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab

(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0

(3)对负实数a,b,有a+b<0<2√(a*b)

(4)对实数a,b(a≥b),有a(a-b)≥b(a-b)

(5)对非负数a,b,有a^2+b^2≥2ab≥0

(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab

(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2

(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac

(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2

2/(1/a+1/b)≤√ab≤a+b/2≤√((a^2+b^2)/2)

[编辑本段]●【均值不等式的证明】

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等

下面介绍个好理解的方法

琴生不等式法

琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,

则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)]

设f(x)=lnx,f(x)为上凸增函数

所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=lnn次√(x1*x2*...*xn)

即(x1+x2+...+xn)/n≥n次√(x1*x2*...*xn)

[编辑本段]●【均值不等式的应用】

例一 证明不等式:2√x≥3-1/x (x>0)

证明:2√x+1/x=√x+√x+1/x≥3*3次√(√x)*(√x)*(1/x)=3

所以,2√x≥3-1/x

例二 长方形的面积为p,求周长的最小值

解:设长,宽分别为a,b,则a*b=p

因为a+b≥2√ab,所以2(a+b)≥4√ab=4√p

周长最小值为4√p

例三 长方形的周长为p,求面积的最大值

解:设长,宽分别为a,b,则2(a+b)=p

因为a+b=p/2≥2√ab,所以ab≤p^2/16

面积最大值是p^2/16

[编辑本段]●【均值不等式的总结】

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)

3、算术平均数:An=(a1+a2+...+an)/n

4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]

这四种平均数满足Hn≤Gn≤An≤Qn

a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号

【柯西不等式的证法】

柯西不等式的一般证法有以下几种:

■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.

我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)

则我们知道恒有 f(x) ≥ 0.

用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.

于是移项得到结论。

■②用向量来证.

m=(a1,a2......an) n=(b1,b2......bn)

mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.

因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)

这就证明了不等式.

柯西不等式还有很多种,这里只取两种较常用的证法.

[编辑本段]【柯西不等式的应用】

柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。

■巧拆常数:

例:设a、b、c 为正数且各不相等。

求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)

分析:∵a 、b 、c 均为正数

∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9

而2(a+b+c)=(a+b)+(a+c)+(c+b)

又 9=(1+1+1)(1+1+1)

证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9

又 a、b 、c 各不相等,故等号不能成立

∴原不等式成立。

像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.

推荐
© 2024 春风百科