<共轭复根怎么求-知识百科-春风百科
> 知识百科 > 列表
共轭复根怎么求
时间:2024-12-23 19:46:37
答案

非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。

共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

共轭复根求解公式:

通常出现在一元二次方程中。若根的判别式△=b2-4ac0, ,方程有一对共轭复根。

根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。

由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。

另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。

由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac0时的两根为共轭复根。

根与系数关系:x1+x2=-b/a,x1+x2=c/a。

a-bi与 a+bi为共轭复数 一个一元二次方程,如果在实数域内无解,也就是判别式小于0,那么两个复根一定是共轭复根。原因 :根据韦达定理两根和、两根积都为实数 而每个根有都是负数,那么只可能两根分别为a-bi和a+bi。

推荐
© 2024 春风百科