L=lim(n->∞)[(2n)!/(n!.n^n)]^[1/(n+1)]
lnL
=lim(n->∞)[1/(n+1)]{∑(i:1->n)ln[(n+i)/n]}
=lim(n->∞)[1/(n+1)]{∑(i:1->n)ln[(1+i/n)}
=∫(0->1)ln(1+x)dx
=[xln(1+x)]、(0->1)-∫(0->1)x/(1+x)dx
=ln2-∫(0->1)[1-1/(1+x)]dx
=ln2-[x-ln、1+x、]、(0->1)
=ln2-(1-ln2)
=2ln2-1
L=e^(2ln2-1)=4e^(-1)
lim(n->∞)[(2n)!/(n!.n^n)]^[1/(n+1)]=4e^(-1)