很简单
解答如下
解:xy'+y=x^2+2化为(x^2-y+2)dx-xdy=0
可以令m(x,y)=x^2-y+2,n(x,y)=-x
m(x,y)关于y的偏导是-1,n(x,y)关于x的偏导是-1,则该微分方程是恰当方程
令初始条件y。=y(x。)
得到(x,x。)∫(x^2-y+2)dx-(y,y。)∫x。dy=0
从而得到
通积分x^3/3-yx+2x=c(c为常数)
这里说明的是,计算到通积分即可,通积分是通解的隐函数表达形式。
也可以写成通解的形式,但会遇到x是否为零的讨论,所以还是写成通积分的形式较为简单。